Modello atomico di Heisenberg Caratteristiche e limiti
il Modello atomico di Heisenberg (1927) introduce il principio di indeterminazione negli orbitali elettronici che circondano il nucleo atomico. L'eccezionale fisico tedesco stabilì le basi della meccanica quantistica per stimare il comportamento delle particelle subatomiche che costituiscono un atomo.
Il principio di indeterminazione di Werner Heisenberg indica che non è possibile conoscere con certezza né la posizione né il momento lineare di un elettrone. Lo stesso principio si applica alle variabili tempo ed energia; cioè, se abbiamo un indizio sulla posizione dell'elettrone, non conosceremo il momento lineare dell'elettrone e viceversa.
In breve, non è possibile prevedere il valore di entrambe le variabili contemporaneamente. Quanto sopra non implica che nessuna delle grandezze menzionate in precedenza non possa essere conosciuta con precisione. Finché è separato, non vi è alcun impedimento per ottenere il valore dell'interesse.
Tuttavia, l'incertezza si verifica quando si tratta di conoscere contemporaneamente due grandezze coniugate, come la posizione e il momento lineare, e il tempo insieme all'energia.
Questo principio sorge a causa di un ragionamento strettamente teorico, come l'unica spiegazione praticabile per dare ragione alle osservazioni scientifiche.
indice
- 1 caratteristiche
- 2 test sperimentali
- 2.1 Esempio
- 2.2 Meccanica quantistica diversa dalla meccanica classica
- 3 limitazioni
- 4 Articoli di interesse
- 5 riferimenti
lineamenti
Nel marzo 1927 Heisenberg pubblicò il suo lavoro Sul contenuto percettivo della cinematica e della meccanica quantistica, dove ha dettagliato il principio di incertezza o indeterminazione.
Questo principio, fondamentale nel modello atomico proposto da Heisenberg, è caratterizzato da quanto segue:
- Il principio di indeterminazione emerge come una spiegazione che integra le nuove teorie atomiche sul comportamento degli elettroni. Nonostante l'uso di strumenti di misura con alta precisione e sensibilità, l'indeterminazione è ancora presente in qualsiasi test sperimentale.
- A causa del principio di indeterminazione, quando si analizzano due variabili correlate, se si ha una conoscenza accurata di una di queste, allora l'indeterminazione sul valore dell'altra variabile aumenterà.
- Il momento lineare e la posizione di un elettrone, o altra particella subatomica, non possono essere misurati allo stesso tempo.
- La relazione tra le due variabili è data da una disuguaglianza. Secondo Heisenberg, il prodotto delle variazioni del momento lineare e della posizione della particella è sempre maggiore del quoziente tra la costante di Plank (6.62606957 (29) × 10 -34 Jules x secondi) e 4π, come descritto nella seguente espressione matematica:
La legenda corrispondente a questa espressione è la seguente:
Δp: indeterminazione del momento lineare.
Δx: indeterminazione della posizione.
h: costante della plancia.
π: numero pi 3.14.
- In considerazione di quanto sopra, il prodotto delle incertezze ha come limite inferiore la relazione h / 4π, che è un valore costante. Pertanto, se una delle grandezze tende a zero, l'altra deve aumentare nella stessa proporzione.
- Questa relazione è valida per tutte le coppie di grandezze canoniche coniugate. Ad esempio: il principio di indeterminazione di Heisenberg è perfettamente applicabile alla coppia tempo-energia, come dettagliato di seguito:
In questa espressione:
ΔE: indeterminazione di energia.
Δt: indeterminazione del tempo.
h: costante della plancia.
π: numero pi 3.14.
- Da questo modello si deduce che il determinismo causale assoluto nelle variabili canoniche coniugate è impossibile, poiché per stabilire questa relazione si dovrebbe avere una conoscenza dei valori iniziali delle variabili di studio.
- Di conseguenza, il modello di Heisenberg è basato su formulazioni probabilistiche, a causa della casualità che esiste tra le variabili a livelli subatomici.
Test sperimentali
Il principio di indeterminazione di Heisenberg emerge come l'unica spiegazione possibile per i test sperimentali che hanno avuto luogo durante i primi trent'anni del 21 ° secolo.
Prima che Heisenberg enunciasse il principio di indeterminazione, i precetti prevalenti suggerivano allora che le variabili slancio lineare, posizione, momento angolare, tempo, energia, tra gli altri, per le particelle subatomiche fossero definite operativamente.
Ciò significava che erano trattati come se fosse fisica classica; cioè, è stato misurato un valore iniziale e il valore finale è stato stimato secondo la procedura prestabilita.
Quanto precede comportava la definizione di un sistema di riferimento per le misurazioni, lo strumento di misura e il metodo di utilizzo di detto strumento, secondo il metodo scientifico.
Secondo questo, le variabili descritte dalle particelle subatomiche dovevano comportarsi deterministicamente. Cioè, il suo comportamento doveva essere previsto con precisione e precisione.
Tuttavia, ogni volta che veniva eseguito un test di questa natura, era impossibile ottenere il valore teoricamente stimato nella misurazione.
Le misurazioni sono state travisate a causa delle condizioni naturali dell'esperimento e il risultato ottenuto non è stato utile per arricchire la teoria atomica.
esempio
Per esempio: se si tratta di misurare la velocità e la posizione di un elettrone, l'assemblaggio dell'esperimento dovrebbe contemplare la collisione di un fotone di luce con l'elettrone.
Questa collisione induce una variazione nella velocità e nella posizione intrinseca dell'elettrone, con cui l'oggetto della misurazione viene alterato dalle condizioni sperimentali.
Pertanto, il ricercatore incoraggia il verificarsi di un inevitabile errore sperimentale, nonostante l'accuratezza e la precisione degli strumenti utilizzati.
Meccanica quantistica diversa dalla meccanica classica
In aggiunta a quanto sopra, il principio di indeterminazione di Heisenberg afferma che, per definizione, la meccanica quantistica funziona diversamente dalla meccanica classica.
Di conseguenza, si presume che la conoscenza precisa delle misure a livello subatomico sia limitata dalla linea sottile che separa la meccanica classica e quella quantistica.
limitazioni
Nonostante spieghi l'indeterminatezza delle particelle subatomiche e stabilisca le differenze tra la meccanica classica e quella quantistica, il modello atomico di Heisenberg non stabilisce una singola equazione per spiegare la casualità di questo tipo di fenomeni.
Inoltre, il fatto che la relazione sia stabilita attraverso una disuguaglianza implica che la gamma di possibilità per il prodotto di due variabili canoniche coniugate è indeterminata. Di conseguenza, l'incertezza inerente ai processi subatomici è significativa.
Articoli di interesse
Modello atomico di Schrödinger.
Modello atomico di Broglie.
Modello atomico di Chadwick.
Modello atomico di Perrin.
Modello atomico di Thomson.
Modello atomico di Dalton.
Modello atomico di Dirac Jordan.
Modello atomico di Democrito.
Modello atomico di Bohr.
riferimenti
- Beyler, R. (1998). Werner Heisenberg. Encyclopædia Britannica, Inc. Estratto da: britannica.com
- Il principio di incertezza di Heisenberg (s.f.). Estratto da: hiru.eus
- García, J. (2012). Principio di incertezza di Heisenberg. Estratto da: hiberus.com
- Modelli atomici (s.f.). Università Nazionale Autonoma del Messico. Città del Messico, Messico. Recupero da: asesorias.cuautitlan2.unam.mx
- Werner Heisenberg (s.f.) Estratto da: the-history-of-the-atom.wikispaces.com
- Wikipedia, l'enciclopedia libera (2018). Costante di Plank. Estratto da: en.wikipedia.org
- Wikipedia, l'enciclopedia libera (2018). Relazione di indeterminazione di Heisenberg. Estratto da: en.wikipedia.org